Researchers from UBICS study how multilayers that form the human brain interact at different resolutions

- ES- EN
Recerca The architecture of the brain supports cognitive and behavioural functions and it is extremely complex with connections at multiple layers that interact with each other. However, research efforts are usually focused on a single spatial scale. In a study led by researchers of the Institute of Complex Systems of the University of Barcelona (UBICS), researchers studied the multiscale spatial organization of the brain and observed that, in a geometric network model, the layers at different resolution are self-similar, that is, as we move away, the geometric and connectivity structure of the layers remains the same. In order to carry out this study, researchers used two high-quality datasets with maps of neural connections, connectomes, of eighty-four healthy subjects with five anatomical resolutions for each. According to M. Àngels Serrano, ICREA researcher at UBICS, "the results show that brain connectivity at different scales is organized with the same principles that lead to a efficient decentralized communication'. The structure of the human brain expands over a series of interrelated length scales which increase its complexity. "The self-similarity we determined as a pattern in the multiscale structure of the human connectome introduces the simplicity as an organizing principle', notes Serrano.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience